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ABSTRACT  

Users of optical see-through head-mounted displays (OHMD) 
perceive color as a blend of the display color and the background. 
Color-blending is a major usability challenge as it leads to loss of 
color encodings and poor text legibility. Color correction aims at 
mitigating color blending by producing an alternative color which, 
when blended with the background, more closely approaches the 
color originally intended. To date, approaches to color correction 
do not yield optimal results or do not work in real-time. This paper 
makes two contributions. First, we present QuickCorrection, a real-
time color correction algorithm based on display profiles. We 
describe the algorithm, measure its accuracy and analyze two 
implementations for the OpenGL graphics pipeline. Second, we 
present SmartColor, a middleware for color management of user-
interface components in OHMD. SmartColor uses color correction 
to provide three management strategies: correction, contrast, and 
show-up-on-contrast. Correction determines the alternate color 
which best preserves the original color. Contrast determines the 
color which best warranties text legibility while preserving as much 
of the original hue. Show-up-on-contrast makes a component 
visible when a related component does not have enough contrast to 
be legible. We describe the SmartColor’s architecture and illustrate 
the color strategies for various types of display content. 

Keywords: Head-Mounted Displays, See-through Displays, 
Transparency, Color Blending, Correction, Contrast. 

Index Terms: H.5 [Information Interfaces and Presentation]: 
H.5.1—Multimedia Information Systems - Artificial, Augmented, 
and Virtual Realities; H.5.2 - User Interfaces - Ergonomics, 
Evaluation / Methodology, Screen Design, Style Guides 

1 INTRODUCTION 

A major usability challenge for optical head-mounted displays 
(OHMD) is that users perceive color as a blend of the display color 
and the background [4]. For example, users perceive red as magenta 
when the background is blue, and as yellow when the background 
is green. Color blending has several negative effects on the display 
content: it reduces the readability of text [18], makes augmented 
reality (AR) objects look translucent and unreal [1], impairs the 
interpretation of color-encoded information such as status icons or 
system alerts, and leads users to confusion [19]. Therefore, 
addressing color blending is an important issue as it compromises 
the usability and adoption of OHMDs [10][11]. 

Existing solutions to color blending include occlusion support 
and color correction. The occlusion approach uses spatial light 
modulators such as liquid crystals to block light coming from the 
background and keep it from blending with the display color [3]. 
Occlusion support requires additional optical hardware, making the 
OHMD bulky [3][5] and compromising its transparency [14]. The 
color correction approach consists on determining an alternative 
color which, upon blending with the background, results on a color 
closer to the one originally designed for. Color correction does not 
require additional optical hardware and therefore does not affect the 
overall transparency and lightness of the display. However, existing 
color correction algorithms are not usable. Weiland et al. proposed 
several correction algorithms which often result on black or depend 
on arbitrary constants [24]. Sridharan et al. proposed a solution 
which evaluates a subset of all possible display colors; returning 
the best possible solution but not computable in real time [22]. 

In this paper we present two main contributions. First, we present 
QuickCorrection, a real-time color correction algorithm based on 
display color profiles. Our algorithm avoids exhaustive search by 
understanding the problem as a search in the three dimensions of 
the CIE LAB color space. We present two implementations of our 
algorithm for the OpenGL platform and study their accuracy and 
performance.  

Our second contribution is SmartColor, a user-interface 
framework aimed at mitigating the effects of color blending on 
user-interface components according to three color management 
strategies: correction, contrast, and show-up-on-contrast (see 
Figure 1). In correction mode, SmartColor executes the real-time 
color correction algorithm aiming at maintaining color encodings. 
In contrast mode, SmartColor limits the three-dimensional search 
to include only the colors that provide a difference of 27 units in 
luminance required for text readability [25] while preserving as 
much of the original hue as possible. Finally, the show-up-on-
contrast mode makes content visible only when the contrast of 
related content is compromised by the background. We describe the 
SmartColor architecture, present different configuration options, 
and illustrate the color strategies for various types of content. 

Figure 1. SmartColor manipulation strategies for text labels.  

(best seen in color) 
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2 EXISTING SOLUTIONS TO THE COLOR-BLENDING PROBLEM 

Ad-hoc solutions to color blending include users placing their hand 
in front of the display or directing their head to darker backgrounds 
[18]. In this section we cover hardware and software solutions to 
color blending.  

2.1 Hardware-based Solutions 

Hardware-based solutions are normally referred to as occlusion 
support in the OHMD literature. Occlusion support contemplates 
situations where virtual objects occlude real-world objects. The 
counterpart, mutual occlusion, includes cases where real-world 
objects can also occlude the virtual object.  

To provide occlusion support the basic approach consists on 
augmenting the optical element of the OHMD with the capacity of 
blocking background light at the pixel level. This is achieved using 
spatial-light modulators (SLM) [1][5][8]. For each point on the 
display, the graphics driver generates the colored pixels which are 
to be shown to the user and an equivalent opacity mask which is 
applied to the background light. The opacity mask effectively 
blocks the background colors and leaves the colored pixels on a 
black background. This approach uses optical elements to redirect 
the background and display lights through the appropriate optical 
pathways. This implies that these systems can get to be large and 
impractical for everyday use [1][8][9]. Gao et al. achieved smaller 
sizes using curved lenses [5][6]. 

Maimone et al. [14] presented an alternative without the need to 
manipulate optical pathways. Their smaller device uses stacked 
LCD panels and a shutter in two consecutive modes. In the first 
mode, the shutter blocks the entire background light while the LCD 
shows the colored content by filtering white light from an 
embedded backlight source. In the second mode, the shutter lets 
background light through and the LCD blocks it on the pixels where 
it previously showed content. By quickly switching between the 
two modes users get the illusion of occluded virtual content. This 
is a promising approach and its realization depends on the 
availability of high frequency (>480 Hz) and highly transparent 
LCD displays. Smithwick et al. built a closely related solution for 
window-size transparent displays [21]. 

2.2  Software-based Solutions 

Software-based solutions seek to change properties of the digital 
content in order to minimize color blending, particularly for text-
readability. A captured image of the background scene is analyzed. 
A simple solution is to increase the intensity of the digital text 
(mentioned in [8]) according to the background objects in the 
vicinity; however this is limited when backgrounds are bright. A 
system can also capture the user’s background, classify it into zones 
where digital text would be readable or unreadable, and relocate 
content to the readable regions [12]. Automatic relocation can take 
into account restrictions such as ordering of components [23].  

Another alternative is to compensate the changes in color by 
means of color correction. Researchers have developed color 
correction techniques largely focused on projection systems for 
spatial augmented reality (SAR) applications [15]. For example 
Bimber et al. explored color correction in projection-based 
transparent-display showcases [1] using surface radiance measures, 
3D models of the world and the possibility to change the real-world 
illumination. OHMDs do not have all these capabilities and 
therefore the projection-based approaches do not directly transfer.  

Little research exists into how color correction applies to 
OHMDs and transparent displays in general. Weiland et al. 

generated four color correction algorithms for transparent displays: 
trivial, weighted, simple smooth and advanced smooth [24]. All 
these methods use a digital camera to capture the background image 
and map it to the pixel coordinates of the transparent display. The 
trivial method removes the background RGB values from the 
foreground image. Weighted also performs background subtraction 
but with user-defined weights for the background and foreground. 
Simple smooth introduces luminosity of the background image as a 
limit to the subtraction. Finally, advanced smooth extends the 
simple smooth by adding user defined weights for the background 
and foreground. The main problem of all these methods is that they 
operate on RGB space, which is a color space created to store and 
represent color but has little relation to the way colors interact or 
are perceived by users, as shown empirically [22]. Therefore, 
subtraction of RGB components often results in black. 

Sridharan et al. presented the binned-profile (BP) method which 
uses a discrete display profile to evaluate the color which, upon 
blending with the background, comes closest to the desired color 
[22]. The authors showed that using a discrete and limited profile 
the system can accurately predict color blending using the CIE 
XYZ and LAB color spaces for color addition and perceptual 
difference respectively. The BP method uses a best-fit approach 
where all elements of the display profile are evaluated providing a 
ground truth for what the best alternative color is (we refer to this 
correction approach as the BestFit method in the rest of this paper). 
However, this algorithm does not scale to real-time systems where 
the profile resolution needs to be much higher (Sridharan et al. used 
only 8390 discrete bins, which makes for poor color resolution) and 
millions of corrections are required every second. 

The goal in this paper is to create a correction algorithm which, 
while relying on discrete and measured display profiles, does not 
require exhaustive search and thus can be computed in real time. 

3 METHODS AND SCOPE 

Color blending is a function of two color distortions – render and 
material – introduced by the transparent display [22]. The render 
distortion accounts for the particular way a display shows a given 
color (Dc – display color). The material distortion accounts for how 
the transparent display alters a background color (Bc) as it passes 
through the transparent material. Equation 1 defines the blended 
color as the addition (in the CIE XYZ color space) of the colors 
resulting from the two distortions. 

𝐵𝑙𝑒𝑛𝑑(𝐷𝑐, 𝐵𝑐) = 𝑓𝑟𝑒𝑛𝑑𝑒𝑟(𝐷𝑐) +  𝑓𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙(𝐵𝑐)    (1) 

Equation 2 presents the general definition of color correction for 
a display color Dc on background Bc. The correction color Xc, is 
that which blend with Bc is at the minimum distance to the desired 
display color Dc. 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡(𝐷𝑐, 𝐵𝑐) = 𝑋𝑐 | min (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐿𝐴𝐵(𝐵𝑙𝑒𝑛𝑑(𝑋𝑐, 𝐵𝑐), 𝐷𝑐)   (2) 

Sridharan et al.’s used colorimetric measurements of the display 
binned-profile to address the frender distortion, and uses an 
exhaustive search to evaluate the distance function for all the bins 
in the profile [22]. A real time correction algorithm based on 
display profiles requires determining an efficient method to 
evaluate the distance function on the display profile. Our research 
continues this line of enquiry and uses display profiles to address 
the frender distortion. For the purposes of this paper we leave the 
fmaterial out of our scope and treat background colors “as is”. We 
note, however, that a complete color correction solution should 
characterize the fmaterial distortion in order to provide accurate color 
blending predictions.  
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We limit the scope of our paper to two specific goals. Our first 
goal is to design and evaluate a real-time color correction algorithm 
based on display profiles. Our second goal is to showcase how 
OHMD applications can use color correction on different types of 
display content. We do this by means of the SmartColor 
framework. We developed and tested our algorithm using a 
simulated OHMD environment where color blending is simulated 
by means of color addition in the CIE XYZ color space. We used a 
white point for color conversions at D65. The accuracy of the color 
blending estimations provided by this environment has been 
measured [22] to be below 1 just noticeable difference (JND = 2.3 
points in LAB [13]). This level of precision allow us to generalize 
our results to actual OHMDs, provided a measured display profile 
is used and the fmaterial distortion is accounted for. 

As a display profile we binned the LAB color space from values 
taken from sRGB. Previous work binned the CIA LAB color space 
at 5x5x5 to warranty all colors within the bin to be within 1 JND 
[7][22]. However, this means that two consecutive bins have a 
perceptual distance of ~2 JNDs. A smaller distance between 
consecutive bins results in smoother transitions between closely 
related corrections. A distance of ~1 JND between all neighboring 
bins can be achieved by binning at 1.32x1.32x1.321. However, the 
memory needed to store such high resolution profile is significant 
(approx. 132MB). We generated a binned profile at 2.3x2.3x2.3 to 
warranty a difference of ~1 JND between two consecutive bins on 
the sampling planes (approx. 21MB). As background light we used 
videos capture at a 6500K color temperature. 

4 REAL-TIME BINNED PROFILE COLOR CORRECTION 

In order to propose a new correction algorithm, we studied how a 
display profile behaves in LAB coordinates during color blending. 
Figure 2A shows the sRGB color space binned at 5x5x5 on the 
LAB color space (L - vertical axis, A - slanted red, B – slanted 
blue). Each sphere in the graph represents one bin of the display 
profile. Figure 2B shows all bins in the profile change when 
blended with a greenish background. The bin color changes 
according to the background, and also its location in LAB color 
space (see the trace lines). The bin representing “black” shifts to 
the location of the background color (black + green = green). A 
purplish background moves all bins toward purple (see Figure 2C). 
And a light gray background moves all the bins upwards toward 
white (see Figure 2D). This representation is consistent with 
Gabbard et al.’s two-dimensional plots of color blending [4], and 
reveals three properties of a blended profile:  
1. All bins are changed by the background and move together.  
2. Background brightness is passed on to the whole profile, so 

that no blended bin is darker than the background.  
3. Despite the considerable changes in shape and size, the profile 

bins preserve their spatial relations.  

The implication of these properties is that for any given point in 
LAB, the distances from the bins to the point are ordered. And this 
pattern is followed also after the bins blend with a background 
color. For the sake of simplicity, we explain the following steps in 
a one-dimensional space. Given colors C1, C2, and C3 where:  

𝐶1 < 𝐶2 < 𝐶3 
From Figure 2 we deduce that for any background Bc 

𝐵𝑙𝑒𝑛𝑑(𝐶1, 𝐵𝑐) < 𝐵𝑙𝑒𝑛𝑑(𝐶2, 𝐵𝑐) < 𝐵𝑙𝑒𝑛𝑑(𝐶3, 𝐵𝑐) 

Therefore, for any display color Dc, if 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐵𝑙𝑒𝑛𝑑(𝐶2, 𝐵𝑐), 𝐷𝑐) < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐵𝑙𝑒𝑛𝑑(𝐶3, 𝐵𝑐), 𝐷𝑐) 

Then 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐵𝑙𝑒𝑛𝑑(𝐶1, 𝐵𝑐), 𝐷𝑐) < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐵𝑙𝑒𝑛𝑑(𝐶3, 𝐵𝑐), 𝐷𝑐) 

                                                             
1 The distance between a bin and its furthest neighbor <= 2.3. 

Our algorithm, called QuickCorrection, leverages the ordered 
natured of the blended profile to calculate distance to the desired 
display color on a subset of the display profile bins. Our algorithm 
is inspired in traditional binary search for ordered vectors. When 
correcting a display color Dc on a background Bc proceed as: 

1. The display profile is represented as a 3D matrix of size Lmax, 
Amax and Bmax. To start, the algorithm locates itself on the 
center bin (l0, a0, b0). The current location is called origin. 

2. Calculate the distance from the blended origin to Dc. 
3. A variable step exists for each axis, initialized as a quarter of 

the axis size, e.g. stepL = Lmax/4. 
4. While at least one step variable is greater than zero, do: 
4.1. For each axis find the bins locate at origin+step and origin–

step, to form a set of 6 samples, 2 in each axis.  Each axis 
configures a sampling plane. 

4.2. Calculate the distance from the blended samples to Dc, and 
estimate how much smaller each distance is compared 
distance calculated for the origin. 

4.3. If none of the samples is closer than the origin then divide all 
steps by 2. Go to step 4. 

4.4. If at least one sample is closer than origin then move the 
origin along a vector created by the relative weights of the 
closer samples. Go to step 4. 

5. Return origin. 

4.1 Experimental Analysis 

In this section we analyze the correction capacity of the BestFit [22] 
and QuickCorrection algorithms. We implemented the algorithms 
as fragment shaders for OpenGL. See the next section for details. 

As test data we used random RGB pixels (alpha=255) for pairs 
of foreground and background 384x216 images (82,944 pixels). 
We collected data for 4 such image pairs for a total of 384x216x4 
= 331,716 corrections. For each pixel pair we computed the normal 
blend (no correction) and the solutions with the two algorithms. We 
measured the distance in LAB from the intended foreground to the 
normal blend and to the blends of the two solutions. Colors are 
blended by using color addition in the CIE XYZ color space, and 
distances are calculated using the CIA LAB color space. In all cases 
we used a D65 white point. This color blending prediction has a 
measured accuracy within 1 JND [22]. 

Figure 2. Gamut blending in CIE LAB. (best seen in color) 

A) Binned sRGB on a black background.  

B) Blending with green (R: 59, G: 119, B: 31). 

C) Blending with purple (R: 105, G: 54, B: 169). 

D) Blending with light gray (R: 193, G: 198, B: 198). 

Tracing lines are drawn every 100th bin. 
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Figure 3 shows the distribution of the blend distances. Both 
correction algorithm present a similar correction pattern with the 
mean distance moving from 48.29 (no correction) to 31.53 in 
BestFit and 32.74 in QuickCorrection. These reductions means a 
general improvement of 34.7% and 32.2% respectively. In other 
words, BestFit colors are in general 34.7% closer to the desired 
color. Similarly, QuickCorrection colors are 32.2% closer to the 
desired color. Statistical analysis with the Wilcoxon test for non-
parametric data revealed both methods are significantly different 
than no correction (BestFit Z=-222.014 p=0.0, QuickCorrection 
Z=-221.593 p=0.0) and from each other (Z=-120.425 p=0.0). 

Figure 4 shows the original blend (gray) and the blends corrected 
with the BestFit (green) and QuickCorrection (blue) algorithms. 
The chart bars are divided according to dark (L <=50) and light (L 
> 50) foreground and backgrounds. The foreground colors most 
affected by color blending are those with low luminosity (dark), 
particularly in light backgrounds (such as daylight conditions). This 
is due to the additive nature of color blending by which the L value 
of the background will “move up” the entire display profile. Figure 
4 also shows the correction accuracy of QuickCorrection to behave 
similarly to BestFit across the different luminosity levels. An 
important corollary of our analysis is that, taking into account that 
the BestFit algorithm tries all possible display colors, software-only 
color correction cannot achieve correction rates higher than 34.7%. 
In other words, the effects of the background color –particularly L– 
cannot be completely removed with software-based color 
correction alone. 

A closer comparison between BestFit and QuickCorrection 
showed that in 2.91% of the pairs for which a perfect solution was 
possible (distance between the desired foreground and the BestFit 
solution blended with the background equals to zero) 
QuickCorrection achieved it in 2.33% of the cases. Moreover, 
QuickCorrection arrived to the exact same solution as BestFit in 
53.25% of the cases, and in 61.40% the two solutions where 
perceptually equivalent (distance in LAB <= 2.3). Figure 5-left 
shows the distribution of the remaining samples which did not 
result on the same color. The graph shows that 50% of the 
differences (80.7% of the total) are within 6.1 LAB units or less 
than 3 just-noticeable differences (JND). Also, 75% of the 
differences (90.35% of the total) are within 10.7 LAB units or less 
than 5 JNDs. Interestingly, in 0.56% of the corrections 
QuickCorrection arrived to a solution worse than the original blend. 

Finally, we measured the number of steps QuickCorrection 
required to arrive to a solution (steps 4.3 and 4.4 of the algorithm). 
Figure 5-right shows the histogram of the required steps. Visual 
inspection of shows the mean number of steps to be between 7 and 
8, and that most solutions are found within 15 jumps.  

4.2 Graphics Pipeline Implementation 

Implementing color correction with the modern graphic pipelines 
(such as DirectX or OpenGL) can be done at different stages of the 
rendering process. The rendering process receives drawing 
coordinates (vertices) and primitives (line, triangle, square, etc) and 
converts them into pixels on the display. User code can intervene 
in the process and modify the attributes of vertices or fragments 
such as their location and color. A detailed explanation of the 
graphics pipeline is beyond the scope of this paper and we refer the 
reader to [16][17]. However, we would like to highlight the 
different computational demands of the vertex and fragment 
programs. This is important because ideally we would like a color 
correction algorithm to be integrated to the graphics processing 
while using the least possible computational resources.  

The basic building block for computer graphics are primitives. A 
primitive is an order to the graphics card to draw basic shapes from 
a set of vertices. For example, to draw a triangle the system requires 
three vertices grouped into a TRIANGLE primitive. Complex 
shapes are an accumulation of simpler primitives: e.g., a rectangle 
is four vertices grouped in two triangles. The rasterization stage 
converts vertices and primitives into fragments, which can be 
understood as pixel candidates. The location and color of each 
fragment is calculated by interpolating the values on the vertices. 
Following this process, modern graphic systems generate large 
amounts of pixels from small amounts of data (vertices, primitives). 
The rest of this section explores the implementation of the 
QuickCorrection algorithm as a fragment and a vertex program. 
Figure 6 presents the background (top-left) and foreground (top-
right) used in the subsequent examples. Please note that Figure 6-
top-right is made by the 24 ColorChecker colors and each square is 
built with two OpenGL triangle primitives. Figure 6-bottom shows 
the blend without correction. 

4.2.1 Fragment Shader Implementation 

In order to implement color correction on OHMDs we need to 
capture the background colors which blend with the display. With 
a camera on the OHMD we can image capture the background and 
estimate the background color for each individual pixel on the 
display. With this background image as input we first explore 
QuickCorrection as a fragment program. 

We implemented the QuickCorrection algorithm using OpenGL 
Shading Language (GLSL) 1.40 for compatibility with computers 
with low-end graphics cards. The algorithms used a 2.3x2.3x2.3 
display binned profile created from sRGB, and passed it to the 
shader as a rectangular texture. The aligned background image was 
also passed down to the shader as a texture. Based on the analysis 
of steps discussed before, we limited the number of jumps to 15. 

Figure 3. Correction algorithms accuracy 

Figure 5. Left: Differential between best fit and quick correction. 

Right: Number of steps performed by QuickCorrection. 

Figure 4. Accuracy by levels of luminosity. 
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Figure 7 shows our pair of sample images corrected with the 
QuickCorrection fragment shader. The first impression is that the 
colors look, in general, more saturated than the blended image and 
closer to the desired foregrounds. In the case of the gray squares in 
the middle correction can be achieved almost perfectly to the point 
of occluding the chair behind. Another result of the 
QuickCorrection algorithm is that rectangles in colors similar to the 
background (top-left and lower-right) almost disappear. This is due 
to the correction result being a low luminosity color. The circular 
close-ups show how pixel-level correction might often results on 
significantly different colors for consecutive display pixels, with 
the resulting display pixels forming a “rough” image. 

We further analysed QuickCorrection’s runtime performance. 
We measured the runtime performance for a rectangle of semi-
random pixels covering different percentages of the display area 
(10% - 100% - at 100% the image size is 960x540 pixels which is 
a common image size for commercially available OHMDs). The 
background pixels were also randomly generated. Both background 
and foreground pixels were generated only once in order to remove 
the generation cost from our runtime analysis. At 30% of the 
display area, the foreground image is 288x162 = 46,656 pixels. 
This mean that for each frame the QuickCorrection fragment shader 
is executed 46,656 times, with its associated accesses to memory to 
navigate the display profile. Similarly, at 70% the foreground 
image is 672x378 = 254,016 pixels or corrections per frame. We 
ran the QuickCorrection shader on a mobile Intel HD-3000 GPU @ 
350 MHz (2 cores, 4 threads, OpenGL 3.1) and on a high end 

NVidia K4000 @ 810 MHz (768 cores, OpenGL 4.3). For each 
percentage and target platform we ran the shader for 10 seconds 
and calculated the average frames-per-second (FPS).  

Figure 8 shows the runtime performance results. As expected the 
high-end platform was not significantly affected by the correction 
algorithm. Only at 90% of the display area (420K corrections per 
frame) a slow decline was registered, a trend that continued when 
correcting 100% of the display area down to 45.6 FPS. On the other 
hand, the performance of the low-end (mobile) platform decreased 
exponentially as a function of the display area corrected. The 
platform can only preserve real-time correction rates at 17% of the 
display area. The exponential decrease restrict the applicability of 
QuickCorrection as a fragment shader only to computationally 
capable GPUs. Please note that no other CPU or GPU processing 
executed while collecting data, meaning that the FPS would be 
lower than measured when using the application-specific graphics 
and CPU code. 

4.2.2 Vertex Shader Implementation 

Our second implementation moves the QuickCorrection algorithm 
to the vertex shader. Operating on the smaller number of vertices 
rather than fragments reduces the computational demand on the 
GPU. Moreover, by leveraging the interpolation capabilities of the 
graphics pipeline, we expect the consecutive fragments to vary less, 
resulting in smoother surfaces within an object. Two further 
considerations motivate the transition to the vertex shader. The first 
motivation is the observation that real-world objects often have 
uniformly colored surfaces. This consistency in color allows our 
vision system to make out contours which we use to recognize such 
objects. The second motivation relates to the parallax inconsistency 
between the user’s eye and the camera capturing the background. 
The parallax problem means background captures need to be 
transformed to the perspective of the eye before mapping the 
display and background pixels. However, transformations 
techniques cannot account for the differences in depth between the 
objects in the scene. This limitation makes it impossible to achieve 
perfect matching between foreground and background pixels. 
Nonetheless, if the distance between the eye and the camera is short 
enough, and given our first motivation (uniform surfaces) the 
background color for a particular vertex can be estimated as an 
average from a number of pixels. The particular shape of the zone 
to average depends on the physical configuration of hardware 
elements and is beyond the scope of the current paper. For our 
purposes of validating the correction algorithm, we assumed an 
arbitrary average rectangle of 20 pixel sides. We arrived to the 20px 
mark iteratively. 

Given the relatively large size of the interface components such 
as the squares of our color checker sample (see Figure 6-top-right), 
background changes between vertices are unaccounted for. While 

Figure 8. QuickCorrection performance as a fragment shader 

Figure 7. QuickCorrection of the ColorChecker sample foreground. 

The highlights show lack of smoothness. (best seen in color) 

Figure 6. Top: Sample background and foreground images.  

Bottom: Merged images, this is the blend to be corrected.  

(best seen in color) 
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this is desirable when the changes are relatively small (as explained 
before), when changes are large colors should ideally be corrected 
again. To address this concern we tessellate the larger triangle 
primitives into smaller ones, and color correct the resulting 
vertices. This approach increases the number of vertices, but 
operates in still smaller numbers of vertices than fragments. Figure 
10 shows color correction at two tessellation levels. For uniform 
surfaces like the yellow wall, both results are equivalent to 
correction on the fragment shader. In uneven backgrounds, the 
finely tessellated rectangles adapt their corrected colors to the 
objects in the scene (see lower part of Figure 10-bottom).  

Correcting at the vertex shader also presents problems such as 
uneven correction and flickering. The green highlight in Figure 10-
bottom shows that for the mostly uniform yellow wall, the internal 
vertices of the rectangle change their colors considerably giving the 
impression of unevenly corrected figures. In order to maximize 
consistence throughout the corrected figure and minimize the 
unevenness of the rectangle we implemented a simple voting option 
which, after correcting at the vertex level, determines the bin which 
appeared most commonly as the correction result and propagates it 
to all the vertices. We implemented voting using the transform 
feedback mechanism of OpenGL. Figure 9 shows all the correction 
alternatives, where E) shows an unevenly corrected rectangle and 
F) shows the results after a simple majority vote. The second 
problem is the observable flicker between frames due to subsequent 
frames finding different correction results when the background 
change is small. A smoothing mechanism can be implemented to 
reduce the inter-frame flicker where the color to be applied in the 
current frame is a function of a few recent corrections (e.g. average 
of the last 20 corrections). 

To study the performance of QuickCorrection as a vertex shader 
we used random noise as background and a 480x270 pixels 
rectangle. This size is equivalent to 50% of the size in the previous 
experiment. The rectangle was tessellated from 50 to 10 pixels-per-
correction (PPC) in increases of 5. Each vertex of the resulting 
mesh was assigned a random color. Figure 11 shows performance 
of QuickCorrection as a vertex shader, with and without voting. 

Without voting, the high end computer did not have any noticeable 
performance impact (60 FPS), while the mobile computer 
consistently decreased performance. Compared to the fragment 
shader results (3.1 FPS at 50%), the mobile computer has a 
noticeably higher performance up to 15 PPC where it runs at 12 
FPS. Interestingly, at 10 PPC the performance is similar to the 
fragment shader. One reason for such low performance is the added 
overhead of calculating an average background of 20px2 per vertex. 
More interesting is how quickly the voting alternative degrades in 
the high-end machine. At this point, more research is necessary to 
determine the cause of this performance decrease.  

 
 

 

 

 

 

 

 
 

5 SMARTCOLOR: A MIDDLEWARE FOR USER-INTERFACE 

COMPONENTS IN OPTICAL HEAD-MOUNTED DISPLAYS 

In this section we present SmartColor, a graphics middleware 
which leverages QuickCorrection to facilitate the creation of user-
interface components for OHMDs. We present the first SmartColor 
implementation, which focuses on two low-level ui components: 

 2D shapes: rectangle, ellipse, triangle, and line. These 
components are used as icons, and drawing elements.  

 Text labels: Provide colored textual content.  

Figure 11. QuickCorrection performance as a vertex shader. 

Figure 9. A) Background image. B) Display image. 

C) Images blended without correction. 

D) QuickCorrection at the fragment level. 

E) QuickCorrection at the vertex level with tesselation. 

F) QuickCorrection@vertex with simple majority voting. 

Figure 10. Quick correction on the vertex shader. Top: A rectangle 

is made by two large triangles leading to flickering corners.  

Botton: A rectangle is tessellated into smaller into smaller triangles; 

the resulting image with internal noise. 
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Although a limited set, these components are the foundation of 
all two-dimensional user-interfaces such as WIMP. They can be 
used to build wearable interfaces similar to Google Glass, and 2D 
augmented-reality applications such the showcased ORA S display. 

SmartColor relies on our QuickCorrection implementation as a 
vertex shader. Therefore all user interface components are defined 
as a set of vertices. The 2D shapes are defined via OpenGL meshes 
where a series of TRIANGLE primitives configure the desired 
shape. Ellipse components have a circle resolution of 360 
circumference points. Text labels are implemented as a textured 
font. Texture fonts map the coordinates of a letter in a texture image 
to the coordinates for the letter on the display (scaled and 
translated). This means there are only four vertices per character. 
Given that the number of vertices directly influences the quality of 
the correction, text labels rely on a background mesh over which 
corrections are made. This mesh is equivalent to the one on the 2d 
rectangle component, and is not made visible in the user interface.  

Interface developers also define the pixels-per-correction (PPC) 
and correction steps parameters. The mesh behind each component 
is tessellated based on the provided PPC – default: 20px. We limit 
the PPC to minimum 15px, in order to warranty high performance 
even in small computers as shown in Figure 11. The correction 
steps parameter defines the max number of refinements per 
correction. Based on the performance analysis shown in Figure 5, 
we limit the number of steps to a maximum of 15.  

5.1 Color Manipulation Strategies 

Based on the QuickCorrection algorithm, SmartColor supports the 
following color manipulation strategies: correction, contrast and 
show-up-on-contrast. Correction simply applies the correction 
algorithm to the component’s mesh in the way presented in the 
previous section. Figure 10 and Figure 9-EF present correction 
examples for a 2D rectangle component. 

The contrast strategy aims at providing textual content with the 
required luminance difference of 27 units against the background 
[25]. This is implemented by limiting the QuickCorrection search 
to the bins of the display which, upon blending, have a minimum 
different of 27 units of luminance with the background. Figure 12 
shows how this volume changes size according to the background. 
The bins painted white do not provide the required difference in 
luminance. In Figure 12A the profile is blended with a black 
background. In this case the bins that produce the required contrast 
are a large subset of the profile. However, increases in the 
background’s luminosity decreases the number of suitable bins. For 
contrast operations QuickCorretion uses the top-most bin (white) 
as its initial position in order to warranty white as the solution to 
the backgrounds with the highest luminosity. We limit the 
QuickCorrection search algorithm to the valid bins by checking that 
the bin sampled in the vertical axis has the required contrast 
requirement. Using QuickCorrection to correct for contrast not only 
results on a color that maximizes readability for a given background 
(something which could be achieved by modifying the L 
component of the display color [8]), but also on a hue which is as 
close as possible to the originally desired hue.  

Figure 13 shows examples of correction and contrast for text 
labels at different foreground colors. The rectangle on the right 
shows the color as we want it to look through the transparent 
display (added for reference purposes). The top label is neither 
corrected nor contrast adjusted and it shows how the text would 
normally look. The second label is color corrected, and it shows 
how correction actually brings the color closer to the desired color 
on the neighboring square. Please note that for cases A and B the 

color corrected label is almost undistinguishable from the 
background. The bottom label shows the contrast corrected textual 
content which is both visible and maintains some of the desired hue 
in all cases. 

The final color manipulation strategy is show-up-on-contrast, or 
better understood as “shown when a related component presents a 
poor contrast ratio with the background”. Figure 14-left shows the 
no correction, correction, and contrast strategies, together with the 
shown-upon-contrast strategy. The light blue bounding box of the 
last label is shown because the dark blue color of the text does not 
have the necessary contrast difference from the background. Figure 
14-right shows that when the required contrast difference exists the 
bounding box is not shown. This strategy is an alternative to the 
contrast strategy and aims at maintaining the text color for 
situations where color encoding of the text is important (e.g. alert 
or status messages). 

 

 

 

 

 

Note that for all manipulation strategies, interface developers can 
determine whether to use a simple correction at the vertex level, or 
to execute a further voting (see Figure 9F) and smoothing steps. 

Figure 14. Show on poor contrast. (best seen in color) 

Figure 12. Contrast ratio of the sRGB gamut on different 

backgrounds. White areas do not have enough contrast. 

(best seen in color) 

Figure 13. Comparison of correction and contrast for text labels. 

(best seen in color) 
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5.2 Implementation 

We implemented SmartColor on top of OpenFrameworks (OF) 0.8 
for C++. Our target platform was OpenGL 3.1 with GLSL 140. The 
display profile is passed as a 2D texture. By relying on OF, 
SmartColor is multi-platform for desktop and laptop computers. 
Support for OpenGL ES and GLSL ES is left for future work.  

6 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK 

In this paper we presented QuickCorrection: a real-time color 
correction algorithm based on display profiles. QuickCorrection 
takes navigates display profiles using sampling, a radically new 
approach. This approach is not obvious from a traditional computer 
graphics perspective (i.e. colours in RGB), and it's valid only once 
we consider a perceptual representation of colour (i.e. using the CIE 
LAB colour space). Our key contribution is to demonstrate the real-
time feasibility of color correction for oHMDs. We explored 
fragment and vertex shader implementations in terms of 
performance, raising important implications for user interface 
design: fragment-level correction is both costly and impractical 
(parallax problems); correction should happen at the vertex level, 
implying the use of shader-based texturing.  

Based on QuickCorrection we proposed SmartColor, a 
framework for simple user-interface components. SmartColor 
allows the correction of color and contrast of ui components 
according to the background, and to display content conditional to 
the contrast level of another. While this contributions stand far from 
complete occlusion support, they offer new options for the 
increased legibility and preservation of color encodings in OHMD.  

SmartColor’s two major missing components are the support for 
images and 3D content. For images we cannot apply operations at 
the vertex level and therefore need to apply re-coloring strategies. 
3D objects such as planes, spheres, cylinders, cones and arbitrary 
3D meshes, are needed for creating immersive augmented reality 
applications. Our current efforts focus on supporting this type of 
content, although we note that any such implementation is limited 
in its capacity to reproduce proper lighting (dark zones in an object) 
due to the transparency factor. A direction that follows from our 
current work, particularly the approach we used for text labels, is 
to use a background mesh to determine the base color for a 3D 
object (material color). 

Our future work also includes the deployment of SmartColor on 
an actual OHMDs hardware. For this purpose we need to measure 
the display profile, address the fmaterial distortion as a function of the 
display material and the camera used to capture the background, 
and calibrate the camera parameters that minimize the binocular 
parallax. Other directions also include background dependant mesh 
tessellation and the use of the more detailed CIEDE2000 formula 
for color differences in the LAB color space [20]. 
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