

SmartColor: Real-Time Color Correction and Contrast for

Optical See-Through Head-Mounted Displays

Juan David Hincapié-Ramos*, Levko Ivanchuk†, Srikanth Kirshnamachari Sridharan‡, Pourang Irani§

Department of Computer Science, University of Manitoba, Winnipeg, Canada

ABSTRACT

Users of optical see-through head-mounted displays (OHMD)
perceive color as a blend of the display color and the background.
Color-blending is a major usability challenge as it leads to loss of
color encodings and poor text legibility. Color correction aims at
mitigating color blending by producing an alternative color which,
when blended with the background, more closely approaches the
color originally intended. To date, approaches to color correction
do not yield optimal results or do not work in real-time. This paper
makes two contributions. First, we present QuickCorrection, a real-
time color correction algorithm based on display profiles. We
describe the algorithm, measure its accuracy and analyze two
implementations for the OpenGL graphics pipeline. Second, we
present SmartColor, a middleware for color management of user-
interface components in OHMD. SmartColor uses color correction
to provide three management strategies: correction, contrast, and
show-up-on-contrast. Correction determines the alternate color
which best preserves the original color. Contrast determines the
color which best warranties text legibility while preserving as much
of the original hue. Show-up-on-contrast makes a component
visible when a related component does not have enough contrast to
be legible. We describe the SmartColor’s architecture and illustrate
the color strategies for various types of display content.

Keywords: Head-Mounted Displays, See-through Displays,
Transparency, Color Blending, Correction, Contrast.

Index Terms: H.5 [Information Interfaces and Presentation]:
H.5.1—Multimedia Information Systems - Artificial, Augmented,
and Virtual Realities; H.5.2 - User Interfaces - Ergonomics,
Evaluation / Methodology, Screen Design, Style Guides

1 INTRODUCTION

A major usability challenge for optical head-mounted displays
(OHMD) is that users perceive color as a blend of the display color
and the background [4]. For example, users perceive red as magenta
when the background is blue, and as yellow when the background
is green. Color blending has several negative effects on the display
content: it reduces the readability of text [18], makes augmented
reality (AR) objects look translucent and unreal [1], impairs the
interpretation of color-encoded information such as status icons or
system alerts, and leads users to confusion [19]. Therefore,
addressing color blending is an important issue as it compromises
the usability and adoption of OHMDs [10][11].

Existing solutions to color blending include occlusion support
and color correction. The occlusion approach uses spatial light
modulators such as liquid crystals to block light coming from the
background and keep it from blending with the display color [3].
Occlusion support requires additional optical hardware, making the
OHMD bulky [3][5] and compromising its transparency [14]. The
color correction approach consists on determining an alternative
color which, upon blending with the background, results on a color
closer to the one originally designed for. Color correction does not
require additional optical hardware and therefore does not affect the
overall transparency and lightness of the display. However, existing
color correction algorithms are not usable. Weiland et al. proposed
several correction algorithms which often result on black or depend
on arbitrary constants [24]. Sridharan et al. proposed a solution
which evaluates a subset of all possible display colors; returning
the best possible solution but not computable in real time [22].

In this paper we present two main contributions. First, we present
QuickCorrection, a real-time color correction algorithm based on
display color profiles. Our algorithm avoids exhaustive search by
understanding the problem as a search in the three dimensions of
the CIE LAB color space. We present two implementations of our
algorithm for the OpenGL platform and study their accuracy and
performance.

Our second contribution is SmartColor, a user-interface
framework aimed at mitigating the effects of color blending on
user-interface components according to three color management
strategies: correction, contrast, and show-up-on-contrast (see
Figure 1). In correction mode, SmartColor executes the real-time
color correction algorithm aiming at maintaining color encodings.
In contrast mode, SmartColor limits the three-dimensional search
to include only the colors that provide a difference of 27 units in
luminance required for text readability [25] while preserving as
much of the original hue as possible. Finally, the show-up-on-
contrast mode makes content visible only when the contrast of
related content is compromised by the background. We describe the
SmartColor architecture, present different configuration options,
and illustrate the color strategies for various types of content.

Figure 1. SmartColor manipulation strategies for text labels.

(best seen in color)

* e-mail: jdhr@cs.umanitoba.ca
† e-mail: umivanch@cc.umanitoba.ca
‡ e-mail: kirssri@cs.umanitoba.ca
§ e-mail: irani@cs.umanitoba.ca

187

IEEE International Symposium on Mixed and Augmented Reality 2014
Science and Technology Proceedings
10 - 12 September 2014, Munich, Germany
978-1-4799-6184-9/13/$31.00 ©2014 IEEE

2 EXISTING SOLUTIONS TO THE COLOR-BLENDING PROBLEM

Ad-hoc solutions to color blending include users placing their hand
in front of the display or directing their head to darker backgrounds
[18]. In this section we cover hardware and software solutions to
color blending.

2.1 Hardware-based Solutions

Hardware-based solutions are normally referred to as occlusion
support in the OHMD literature. Occlusion support contemplates
situations where virtual objects occlude real-world objects. The
counterpart, mutual occlusion, includes cases where real-world
objects can also occlude the virtual object.

To provide occlusion support the basic approach consists on
augmenting the optical element of the OHMD with the capacity of
blocking background light at the pixel level. This is achieved using
spatial-light modulators (SLM) [1][5][8]. For each point on the
display, the graphics driver generates the colored pixels which are
to be shown to the user and an equivalent opacity mask which is
applied to the background light. The opacity mask effectively
blocks the background colors and leaves the colored pixels on a
black background. This approach uses optical elements to redirect
the background and display lights through the appropriate optical
pathways. This implies that these systems can get to be large and
impractical for everyday use [1][8][9]. Gao et al. achieved smaller
sizes using curved lenses [5][6].

Maimone et al. [14] presented an alternative without the need to
manipulate optical pathways. Their smaller device uses stacked
LCD panels and a shutter in two consecutive modes. In the first
mode, the shutter blocks the entire background light while the LCD
shows the colored content by filtering white light from an
embedded backlight source. In the second mode, the shutter lets
background light through and the LCD blocks it on the pixels where
it previously showed content. By quickly switching between the
two modes users get the illusion of occluded virtual content. This
is a promising approach and its realization depends on the
availability of high frequency (>480 Hz) and highly transparent
LCD displays. Smithwick et al. built a closely related solution for
window-size transparent displays [21].

2.2 Software-based Solutions

Software-based solutions seek to change properties of the digital
content in order to minimize color blending, particularly for text-
readability. A captured image of the background scene is analyzed.
A simple solution is to increase the intensity of the digital text
(mentioned in [8]) according to the background objects in the
vicinity; however this is limited when backgrounds are bright. A
system can also capture the user’s background, classify it into zones
where digital text would be readable or unreadable, and relocate
content to the readable regions [12]. Automatic relocation can take
into account restrictions such as ordering of components [23].

Another alternative is to compensate the changes in color by
means of color correction. Researchers have developed color
correction techniques largely focused on projection systems for
spatial augmented reality (SAR) applications [15]. For example
Bimber et al. explored color correction in projection-based
transparent-display showcases [1] using surface radiance measures,
3D models of the world and the possibility to change the real-world
illumination. OHMDs do not have all these capabilities and
therefore the projection-based approaches do not directly transfer.

Little research exists into how color correction applies to
OHMDs and transparent displays in general. Weiland et al.

generated four color correction algorithms for transparent displays:
trivial, weighted, simple smooth and advanced smooth [24]. All
these methods use a digital camera to capture the background image
and map it to the pixel coordinates of the transparent display. The
trivial method removes the background RGB values from the
foreground image. Weighted also performs background subtraction
but with user-defined weights for the background and foreground.
Simple smooth introduces luminosity of the background image as a
limit to the subtraction. Finally, advanced smooth extends the
simple smooth by adding user defined weights for the background
and foreground. The main problem of all these methods is that they
operate on RGB space, which is a color space created to store and
represent color but has little relation to the way colors interact or
are perceived by users, as shown empirically [22]. Therefore,
subtraction of RGB components often results in black.

Sridharan et al. presented the binned-profile (BP) method which
uses a discrete display profile to evaluate the color which, upon
blending with the background, comes closest to the desired color
[22]. The authors showed that using a discrete and limited profile
the system can accurately predict color blending using the CIE
XYZ and LAB color spaces for color addition and perceptual
difference respectively. The BP method uses a best-fit approach
where all elements of the display profile are evaluated providing a
ground truth for what the best alternative color is (we refer to this
correction approach as the BestFit method in the rest of this paper).
However, this algorithm does not scale to real-time systems where
the profile resolution needs to be much higher (Sridharan et al. used
only 8390 discrete bins, which makes for poor color resolution) and
millions of corrections are required every second.

The goal in this paper is to create a correction algorithm which,
while relying on discrete and measured display profiles, does not
require exhaustive search and thus can be computed in real time.

3 METHODS AND SCOPE

Color blending is a function of two color distortions – render and
material – introduced by the transparent display [22]. The render
distortion accounts for the particular way a display shows a given
color (Dc – display color). The material distortion accounts for how
the transparent display alters a background color (Bc) as it passes
through the transparent material. Equation 1 defines the blended
color as the addition (in the CIE XYZ color space) of the colors
resulting from the two distortions.

𝐵𝑙𝑒𝑛𝑑(𝐷𝑐, 𝐵𝑐) = 𝑓𝑟𝑒𝑛𝑑𝑒𝑟(𝐷𝑐) + 𝑓𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙(𝐵𝑐) (1)

Equation 2 presents the general definition of color correction for
a display color Dc on background Bc. The correction color Xc, is
that which blend with Bc is at the minimum distance to the desired
display color Dc.

𝐶𝑜𝑟𝑟𝑒𝑐𝑡(𝐷𝑐, 𝐵𝑐) = 𝑋𝑐 | min (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐿𝐴𝐵(𝐵𝑙𝑒𝑛𝑑(𝑋𝑐, 𝐵𝑐), 𝐷𝑐) (2)

Sridharan et al.’s used colorimetric measurements of the display
binned-profile to address the frender distortion, and uses an
exhaustive search to evaluate the distance function for all the bins
in the profile [22]. A real time correction algorithm based on
display profiles requires determining an efficient method to
evaluate the distance function on the display profile. Our research
continues this line of enquiry and uses display profiles to address
the frender distortion. For the purposes of this paper we leave the
fmaterial out of our scope and treat background colors “as is”. We
note, however, that a complete color correction solution should
characterize the fmaterial distortion in order to provide accurate color
blending predictions.

188

We limit the scope of our paper to two specific goals. Our first
goal is to design and evaluate a real-time color correction algorithm
based on display profiles. Our second goal is to showcase how
OHMD applications can use color correction on different types of
display content. We do this by means of the SmartColor
framework. We developed and tested our algorithm using a
simulated OHMD environment where color blending is simulated
by means of color addition in the CIE XYZ color space. We used a
white point for color conversions at D65. The accuracy of the color
blending estimations provided by this environment has been
measured [22] to be below 1 just noticeable difference (JND = 2.3
points in LAB [13]). This level of precision allow us to generalize
our results to actual OHMDs, provided a measured display profile
is used and the fmaterial distortion is accounted for.

As a display profile we binned the LAB color space from values
taken from sRGB. Previous work binned the CIA LAB color space
at 5x5x5 to warranty all colors within the bin to be within 1 JND
[7][22]. However, this means that two consecutive bins have a
perceptual distance of ~2 JNDs. A smaller distance between
consecutive bins results in smoother transitions between closely
related corrections. A distance of ~1 JND between all neighboring
bins can be achieved by binning at 1.32x1.32x1.321. However, the
memory needed to store such high resolution profile is significant
(approx. 132MB). We generated a binned profile at 2.3x2.3x2.3 to
warranty a difference of ~1 JND between two consecutive bins on
the sampling planes (approx. 21MB). As background light we used
videos capture at a 6500K color temperature.

4 REAL-TIME BINNED PROFILE COLOR CORRECTION

In order to propose a new correction algorithm, we studied how a
display profile behaves in LAB coordinates during color blending.
Figure 2A shows the sRGB color space binned at 5x5x5 on the
LAB color space (L - vertical axis, A - slanted red, B – slanted
blue). Each sphere in the graph represents one bin of the display
profile. Figure 2B shows all bins in the profile change when
blended with a greenish background. The bin color changes
according to the background, and also its location in LAB color
space (see the trace lines). The bin representing “black” shifts to
the location of the background color (black + green = green). A
purplish background moves all bins toward purple (see Figure 2C).
And a light gray background moves all the bins upwards toward
white (see Figure 2D). This representation is consistent with
Gabbard et al.’s two-dimensional plots of color blending [4], and
reveals three properties of a blended profile:
1. All bins are changed by the background and move together.
2. Background brightness is passed on to the whole profile, so

that no blended bin is darker than the background.
3. Despite the considerable changes in shape and size, the profile

bins preserve their spatial relations.

The implication of these properties is that for any given point in
LAB, the distances from the bins to the point are ordered. And this
pattern is followed also after the bins blend with a background
color. For the sake of simplicity, we explain the following steps in
a one-dimensional space. Given colors C1, C2, and C3 where:

𝐶1 < 𝐶2 < 𝐶3
From Figure 2 we deduce that for any background Bc

𝐵𝑙𝑒𝑛𝑑(𝐶1, 𝐵𝑐) < 𝐵𝑙𝑒𝑛𝑑(𝐶2, 𝐵𝑐) < 𝐵𝑙𝑒𝑛𝑑(𝐶3, 𝐵𝑐)

Therefore, for any display color Dc, if
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐵𝑙𝑒𝑛𝑑(𝐶2, 𝐵𝑐), 𝐷𝑐) < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐵𝑙𝑒𝑛𝑑(𝐶3, 𝐵𝑐), 𝐷𝑐)

Then
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐵𝑙𝑒𝑛𝑑(𝐶1, 𝐵𝑐), 𝐷𝑐) < 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐵𝑙𝑒𝑛𝑑(𝐶3, 𝐵𝑐), 𝐷𝑐)

1 The distance between a bin and its furthest neighbor <= 2.3.

Our algorithm, called QuickCorrection, leverages the ordered
natured of the blended profile to calculate distance to the desired
display color on a subset of the display profile bins. Our algorithm
is inspired in traditional binary search for ordered vectors. When
correcting a display color Dc on a background Bc proceed as:

1. The display profile is represented as a 3D matrix of size Lmax,
Amax and Bmax. To start, the algorithm locates itself on the
center bin (l0, a0, b0). The current location is called origin.

2. Calculate the distance from the blended origin to Dc.
3. A variable step exists for each axis, initialized as a quarter of

the axis size, e.g. stepL = Lmax/4.
4. While at least one step variable is greater than zero, do:
4.1. For each axis find the bins locate at origin+step and origin–

step, to form a set of 6 samples, 2 in each axis. Each axis
configures a sampling plane.

4.2. Calculate the distance from the blended samples to Dc, and
estimate how much smaller each distance is compared
distance calculated for the origin.

4.3. If none of the samples is closer than the origin then divide all
steps by 2. Go to step 4.

4.4. If at least one sample is closer than origin then move the
origin along a vector created by the relative weights of the
closer samples. Go to step 4.

5. Return origin.

4.1 Experimental Analysis

In this section we analyze the correction capacity of the BestFit [22]
and QuickCorrection algorithms. We implemented the algorithms
as fragment shaders for OpenGL. See the next section for details.

As test data we used random RGB pixels (alpha=255) for pairs
of foreground and background 384x216 images (82,944 pixels).
We collected data for 4 such image pairs for a total of 384x216x4
= 331,716 corrections. For each pixel pair we computed the normal
blend (no correction) and the solutions with the two algorithms. We
measured the distance in LAB from the intended foreground to the
normal blend and to the blends of the two solutions. Colors are
blended by using color addition in the CIE XYZ color space, and
distances are calculated using the CIA LAB color space. In all cases
we used a D65 white point. This color blending prediction has a
measured accuracy within 1 JND [22].

Figure 2. Gamut blending in CIE LAB. (best seen in color)

A) Binned sRGB on a black background.

B) Blending with green (R: 59, G: 119, B: 31).

C) Blending with purple (R: 105, G: 54, B: 169).

D) Blending with light gray (R: 193, G: 198, B: 198).

Tracing lines are drawn every 100th bin.

189

Figure 3 shows the distribution of the blend distances. Both
correction algorithm present a similar correction pattern with the
mean distance moving from 48.29 (no correction) to 31.53 in
BestFit and 32.74 in QuickCorrection. These reductions means a
general improvement of 34.7% and 32.2% respectively. In other
words, BestFit colors are in general 34.7% closer to the desired
color. Similarly, QuickCorrection colors are 32.2% closer to the
desired color. Statistical analysis with the Wilcoxon test for non-
parametric data revealed both methods are significantly different
than no correction (BestFit Z=-222.014 p=0.0, QuickCorrection
Z=-221.593 p=0.0) and from each other (Z=-120.425 p=0.0).

Figure 4 shows the original blend (gray) and the blends corrected
with the BestFit (green) and QuickCorrection (blue) algorithms.
The chart bars are divided according to dark (L <=50) and light (L
> 50) foreground and backgrounds. The foreground colors most
affected by color blending are those with low luminosity (dark),
particularly in light backgrounds (such as daylight conditions). This
is due to the additive nature of color blending by which the L value
of the background will “move up” the entire display profile. Figure
4 also shows the correction accuracy of QuickCorrection to behave
similarly to BestFit across the different luminosity levels. An
important corollary of our analysis is that, taking into account that
the BestFit algorithm tries all possible display colors, software-only
color correction cannot achieve correction rates higher than 34.7%.
In other words, the effects of the background color –particularly L–
cannot be completely removed with software-based color
correction alone.

A closer comparison between BestFit and QuickCorrection
showed that in 2.91% of the pairs for which a perfect solution was
possible (distance between the desired foreground and the BestFit
solution blended with the background equals to zero)
QuickCorrection achieved it in 2.33% of the cases. Moreover,
QuickCorrection arrived to the exact same solution as BestFit in
53.25% of the cases, and in 61.40% the two solutions where
perceptually equivalent (distance in LAB <= 2.3). Figure 5-left
shows the distribution of the remaining samples which did not
result on the same color. The graph shows that 50% of the
differences (80.7% of the total) are within 6.1 LAB units or less
than 3 just-noticeable differences (JND). Also, 75% of the
differences (90.35% of the total) are within 10.7 LAB units or less
than 5 JNDs. Interestingly, in 0.56% of the corrections
QuickCorrection arrived to a solution worse than the original blend.

Finally, we measured the number of steps QuickCorrection
required to arrive to a solution (steps 4.3 and 4.4 of the algorithm).
Figure 5-right shows the histogram of the required steps. Visual
inspection of shows the mean number of steps to be between 7 and
8, and that most solutions are found within 15 jumps.

4.2 Graphics Pipeline Implementation

Implementing color correction with the modern graphic pipelines
(such as DirectX or OpenGL) can be done at different stages of the
rendering process. The rendering process receives drawing
coordinates (vertices) and primitives (line, triangle, square, etc) and
converts them into pixels on the display. User code can intervene
in the process and modify the attributes of vertices or fragments
such as their location and color. A detailed explanation of the
graphics pipeline is beyond the scope of this paper and we refer the
reader to [16][17]. However, we would like to highlight the
different computational demands of the vertex and fragment
programs. This is important because ideally we would like a color
correction algorithm to be integrated to the graphics processing
while using the least possible computational resources.

The basic building block for computer graphics are primitives. A
primitive is an order to the graphics card to draw basic shapes from
a set of vertices. For example, to draw a triangle the system requires
three vertices grouped into a TRIANGLE primitive. Complex
shapes are an accumulation of simpler primitives: e.g., a rectangle
is four vertices grouped in two triangles. The rasterization stage
converts vertices and primitives into fragments, which can be
understood as pixel candidates. The location and color of each
fragment is calculated by interpolating the values on the vertices.
Following this process, modern graphic systems generate large
amounts of pixels from small amounts of data (vertices, primitives).
The rest of this section explores the implementation of the
QuickCorrection algorithm as a fragment and a vertex program.
Figure 6 presents the background (top-left) and foreground (top-
right) used in the subsequent examples. Please note that Figure 6-
top-right is made by the 24 ColorChecker colors and each square is
built with two OpenGL triangle primitives. Figure 6-bottom shows
the blend without correction.

4.2.1 Fragment Shader Implementation

In order to implement color correction on OHMDs we need to
capture the background colors which blend with the display. With
a camera on the OHMD we can image capture the background and
estimate the background color for each individual pixel on the
display. With this background image as input we first explore
QuickCorrection as a fragment program.

We implemented the QuickCorrection algorithm using OpenGL
Shading Language (GLSL) 1.40 for compatibility with computers
with low-end graphics cards. The algorithms used a 2.3x2.3x2.3
display binned profile created from sRGB, and passed it to the
shader as a rectangular texture. The aligned background image was
also passed down to the shader as a texture. Based on the analysis
of steps discussed before, we limited the number of jumps to 15.

Figure 3. Correction algorithms accuracy

Figure 5. Left: Differential between best fit and quick correction.

Right: Number of steps performed by QuickCorrection.

Figure 4. Accuracy by levels of luminosity.

190

Figure 7 shows our pair of sample images corrected with the
QuickCorrection fragment shader. The first impression is that the
colors look, in general, more saturated than the blended image and
closer to the desired foregrounds. In the case of the gray squares in
the middle correction can be achieved almost perfectly to the point
of occluding the chair behind. Another result of the
QuickCorrection algorithm is that rectangles in colors similar to the
background (top-left and lower-right) almost disappear. This is due
to the correction result being a low luminosity color. The circular
close-ups show how pixel-level correction might often results on
significantly different colors for consecutive display pixels, with
the resulting display pixels forming a “rough” image.

We further analysed QuickCorrection’s runtime performance.
We measured the runtime performance for a rectangle of semi-
random pixels covering different percentages of the display area
(10% - 100% - at 100% the image size is 960x540 pixels which is
a common image size for commercially available OHMDs). The
background pixels were also randomly generated. Both background
and foreground pixels were generated only once in order to remove
the generation cost from our runtime analysis. At 30% of the
display area, the foreground image is 288x162 = 46,656 pixels.
This mean that for each frame the QuickCorrection fragment shader
is executed 46,656 times, with its associated accesses to memory to
navigate the display profile. Similarly, at 70% the foreground
image is 672x378 = 254,016 pixels or corrections per frame. We
ran the QuickCorrection shader on a mobile Intel HD-3000 GPU @
350 MHz (2 cores, 4 threads, OpenGL 3.1) and on a high end

NVidia K4000 @ 810 MHz (768 cores, OpenGL 4.3). For each
percentage and target platform we ran the shader for 10 seconds
and calculated the average frames-per-second (FPS).

Figure 8 shows the runtime performance results. As expected the
high-end platform was not significantly affected by the correction
algorithm. Only at 90% of the display area (420K corrections per
frame) a slow decline was registered, a trend that continued when
correcting 100% of the display area down to 45.6 FPS. On the other
hand, the performance of the low-end (mobile) platform decreased
exponentially as a function of the display area corrected. The
platform can only preserve real-time correction rates at 17% of the
display area. The exponential decrease restrict the applicability of
QuickCorrection as a fragment shader only to computationally
capable GPUs. Please note that no other CPU or GPU processing
executed while collecting data, meaning that the FPS would be
lower than measured when using the application-specific graphics
and CPU code.

4.2.2 Vertex Shader Implementation

Our second implementation moves the QuickCorrection algorithm
to the vertex shader. Operating on the smaller number of vertices
rather than fragments reduces the computational demand on the
GPU. Moreover, by leveraging the interpolation capabilities of the
graphics pipeline, we expect the consecutive fragments to vary less,
resulting in smoother surfaces within an object. Two further
considerations motivate the transition to the vertex shader. The first
motivation is the observation that real-world objects often have
uniformly colored surfaces. This consistency in color allows our
vision system to make out contours which we use to recognize such
objects. The second motivation relates to the parallax inconsistency
between the user’s eye and the camera capturing the background.
The parallax problem means background captures need to be
transformed to the perspective of the eye before mapping the
display and background pixels. However, transformations
techniques cannot account for the differences in depth between the
objects in the scene. This limitation makes it impossible to achieve
perfect matching between foreground and background pixels.
Nonetheless, if the distance between the eye and the camera is short
enough, and given our first motivation (uniform surfaces) the
background color for a particular vertex can be estimated as an
average from a number of pixels. The particular shape of the zone
to average depends on the physical configuration of hardware
elements and is beyond the scope of the current paper. For our
purposes of validating the correction algorithm, we assumed an
arbitrary average rectangle of 20 pixel sides. We arrived to the 20px
mark iteratively.

Given the relatively large size of the interface components such
as the squares of our color checker sample (see Figure 6-top-right),
background changes between vertices are unaccounted for. While

Figure 8. QuickCorrection performance as a fragment shader

Figure 7. QuickCorrection of the ColorChecker sample foreground.

The highlights show lack of smoothness. (best seen in color)

Figure 6. Top: Sample background and foreground images.

Bottom: Merged images, this is the blend to be corrected.

(best seen in color)

191

this is desirable when the changes are relatively small (as explained
before), when changes are large colors should ideally be corrected
again. To address this concern we tessellate the larger triangle
primitives into smaller ones, and color correct the resulting
vertices. This approach increases the number of vertices, but
operates in still smaller numbers of vertices than fragments. Figure
10 shows color correction at two tessellation levels. For uniform
surfaces like the yellow wall, both results are equivalent to
correction on the fragment shader. In uneven backgrounds, the
finely tessellated rectangles adapt their corrected colors to the
objects in the scene (see lower part of Figure 10-bottom).

Correcting at the vertex shader also presents problems such as
uneven correction and flickering. The green highlight in Figure 10-
bottom shows that for the mostly uniform yellow wall, the internal
vertices of the rectangle change their colors considerably giving the
impression of unevenly corrected figures. In order to maximize
consistence throughout the corrected figure and minimize the
unevenness of the rectangle we implemented a simple voting option
which, after correcting at the vertex level, determines the bin which
appeared most commonly as the correction result and propagates it
to all the vertices. We implemented voting using the transform
feedback mechanism of OpenGL. Figure 9 shows all the correction
alternatives, where E) shows an unevenly corrected rectangle and
F) shows the results after a simple majority vote. The second
problem is the observable flicker between frames due to subsequent
frames finding different correction results when the background
change is small. A smoothing mechanism can be implemented to
reduce the inter-frame flicker where the color to be applied in the
current frame is a function of a few recent corrections (e.g. average
of the last 20 corrections).

To study the performance of QuickCorrection as a vertex shader
we used random noise as background and a 480x270 pixels
rectangle. This size is equivalent to 50% of the size in the previous
experiment. The rectangle was tessellated from 50 to 10 pixels-per-
correction (PPC) in increases of 5. Each vertex of the resulting
mesh was assigned a random color. Figure 11 shows performance
of QuickCorrection as a vertex shader, with and without voting.

Without voting, the high end computer did not have any noticeable
performance impact (60 FPS), while the mobile computer
consistently decreased performance. Compared to the fragment
shader results (3.1 FPS at 50%), the mobile computer has a
noticeably higher performance up to 15 PPC where it runs at 12
FPS. Interestingly, at 10 PPC the performance is similar to the
fragment shader. One reason for such low performance is the added
overhead of calculating an average background of 20px2 per vertex.
More interesting is how quickly the voting alternative degrades in
the high-end machine. At this point, more research is necessary to
determine the cause of this performance decrease.

5 SMARTCOLOR: A MIDDLEWARE FOR USER-INTERFACE

COMPONENTS IN OPTICAL HEAD-MOUNTED DISPLAYS

In this section we present SmartColor, a graphics middleware
which leverages QuickCorrection to facilitate the creation of user-
interface components for OHMDs. We present the first SmartColor
implementation, which focuses on two low-level ui components:

 2D shapes: rectangle, ellipse, triangle, and line. These
components are used as icons, and drawing elements.

 Text labels: Provide colored textual content.

Figure 11. QuickCorrection performance as a vertex shader.

Figure 9. A) Background image. B) Display image.

C) Images blended without correction.

D) QuickCorrection at the fragment level.

E) QuickCorrection at the vertex level with tesselation.

F) QuickCorrection@vertex with simple majority voting.

Figure 10. Quick correction on the vertex shader. Top: A rectangle

is made by two large triangles leading to flickering corners.

Botton: A rectangle is tessellated into smaller into smaller triangles;

the resulting image with internal noise.

192

Although a limited set, these components are the foundation of
all two-dimensional user-interfaces such as WIMP. They can be
used to build wearable interfaces similar to Google Glass, and 2D
augmented-reality applications such the showcased ORA S display.

SmartColor relies on our QuickCorrection implementation as a
vertex shader. Therefore all user interface components are defined
as a set of vertices. The 2D shapes are defined via OpenGL meshes
where a series of TRIANGLE primitives configure the desired
shape. Ellipse components have a circle resolution of 360
circumference points. Text labels are implemented as a textured
font. Texture fonts map the coordinates of a letter in a texture image
to the coordinates for the letter on the display (scaled and
translated). This means there are only four vertices per character.
Given that the number of vertices directly influences the quality of
the correction, text labels rely on a background mesh over which
corrections are made. This mesh is equivalent to the one on the 2d
rectangle component, and is not made visible in the user interface.

Interface developers also define the pixels-per-correction (PPC)
and correction steps parameters. The mesh behind each component
is tessellated based on the provided PPC – default: 20px. We limit
the PPC to minimum 15px, in order to warranty high performance
even in small computers as shown in Figure 11. The correction
steps parameter defines the max number of refinements per
correction. Based on the performance analysis shown in Figure 5,
we limit the number of steps to a maximum of 15.

5.1 Color Manipulation Strategies

Based on the QuickCorrection algorithm, SmartColor supports the
following color manipulation strategies: correction, contrast and
show-up-on-contrast. Correction simply applies the correction
algorithm to the component’s mesh in the way presented in the
previous section. Figure 10 and Figure 9-EF present correction
examples for a 2D rectangle component.

The contrast strategy aims at providing textual content with the
required luminance difference of 27 units against the background
[25]. This is implemented by limiting the QuickCorrection search
to the bins of the display which, upon blending, have a minimum
different of 27 units of luminance with the background. Figure 12
shows how this volume changes size according to the background.
The bins painted white do not provide the required difference in
luminance. In Figure 12A the profile is blended with a black
background. In this case the bins that produce the required contrast
are a large subset of the profile. However, increases in the
background’s luminosity decreases the number of suitable bins. For
contrast operations QuickCorretion uses the top-most bin (white)
as its initial position in order to warranty white as the solution to
the backgrounds with the highest luminosity. We limit the
QuickCorrection search algorithm to the valid bins by checking that
the bin sampled in the vertical axis has the required contrast
requirement. Using QuickCorrection to correct for contrast not only
results on a color that maximizes readability for a given background
(something which could be achieved by modifying the L
component of the display color [8]), but also on a hue which is as
close as possible to the originally desired hue.

Figure 13 shows examples of correction and contrast for text
labels at different foreground colors. The rectangle on the right
shows the color as we want it to look through the transparent
display (added for reference purposes). The top label is neither
corrected nor contrast adjusted and it shows how the text would
normally look. The second label is color corrected, and it shows
how correction actually brings the color closer to the desired color
on the neighboring square. Please note that for cases A and B the

color corrected label is almost undistinguishable from the
background. The bottom label shows the contrast corrected textual
content which is both visible and maintains some of the desired hue
in all cases.

The final color manipulation strategy is show-up-on-contrast, or
better understood as “shown when a related component presents a
poor contrast ratio with the background”. Figure 14-left shows the
no correction, correction, and contrast strategies, together with the
shown-upon-contrast strategy. The light blue bounding box of the
last label is shown because the dark blue color of the text does not
have the necessary contrast difference from the background. Figure
14-right shows that when the required contrast difference exists the
bounding box is not shown. This strategy is an alternative to the
contrast strategy and aims at maintaining the text color for
situations where color encoding of the text is important (e.g. alert
or status messages).

Note that for all manipulation strategies, interface developers can
determine whether to use a simple correction at the vertex level, or
to execute a further voting (see Figure 9F) and smoothing steps.

Figure 14. Show on poor contrast. (best seen in color)

Figure 12. Contrast ratio of the sRGB gamut on different

backgrounds. White areas do not have enough contrast.

(best seen in color)

Figure 13. Comparison of correction and contrast for text labels.

(best seen in color)

193

5.2 Implementation

We implemented SmartColor on top of OpenFrameworks (OF) 0.8
for C++. Our target platform was OpenGL 3.1 with GLSL 140. The
display profile is passed as a 2D texture. By relying on OF,
SmartColor is multi-platform for desktop and laptop computers.
Support for OpenGL ES and GLSL ES is left for future work.

6 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

In this paper we presented QuickCorrection: a real-time color
correction algorithm based on display profiles. QuickCorrection
takes navigates display profiles using sampling, a radically new
approach. This approach is not obvious from a traditional computer
graphics perspective (i.e. colours in RGB), and it's valid only once
we consider a perceptual representation of colour (i.e. using the CIE
LAB colour space). Our key contribution is to demonstrate the real-
time feasibility of color correction for oHMDs. We explored
fragment and vertex shader implementations in terms of
performance, raising important implications for user interface
design: fragment-level correction is both costly and impractical
(parallax problems); correction should happen at the vertex level,
implying the use of shader-based texturing.

Based on QuickCorrection we proposed SmartColor, a
framework for simple user-interface components. SmartColor
allows the correction of color and contrast of ui components
according to the background, and to display content conditional to
the contrast level of another. While this contributions stand far from
complete occlusion support, they offer new options for the
increased legibility and preservation of color encodings in OHMD.

SmartColor’s two major missing components are the support for
images and 3D content. For images we cannot apply operations at
the vertex level and therefore need to apply re-coloring strategies.
3D objects such as planes, spheres, cylinders, cones and arbitrary
3D meshes, are needed for creating immersive augmented reality
applications. Our current efforts focus on supporting this type of
content, although we note that any such implementation is limited
in its capacity to reproduce proper lighting (dark zones in an object)
due to the transparency factor. A direction that follows from our
current work, particularly the approach we used for text labels, is
to use a background mesh to determine the base color for a 3D
object (material color).

Our future work also includes the deployment of SmartColor on
an actual OHMDs hardware. For this purpose we need to measure
the display profile, address the fmaterial distortion as a function of the
display material and the camera used to capture the background,
and calibrate the camera parameters that minimize the binocular
parallax. Other directions also include background dependant mesh
tessellation and the use of the more detailed CIEDE2000 formula
for color differences in the LAB color space [20].

REFERENCES

[1] Bimber, O., Grundhöfer, A., Wetzstein, G. and Knödel. S. 2003.

Consistent Illumination within Optical See-Through Augmented

Environments. In Proc. ISMAR '03. IEEE Computer Society.

[2] Bimber, O. and Raskar, R. 2005. Spatial Augmented Reality: Merging

Real and Virtual Worlds. A. K. Peters Ltd.,Natick, USA.

[3] Cakmakci, O., Ha, Y. and Rolland, J. 2004. A compact optical see-

through head-worn display with occlusion support. In Proc. ISMAR

’04. IEEE/ACM.

[4] Gabbard, J., Swan, J., Zedlitz, J. and Winchester, W.W. 2010. More

than meets the eye: An engineering study to empirically examine the

blending of real and virtual color spaces. In Proc. VR ’10. IEEE.

[5] Gao, C., Lin, Y. and Hua, H. 2012. Occlusion capable optical see-

through head-mounted display using freeform optics. In Proc. ISMAR

’12. IEEE.

[6] Gao, C., Lin, Y. and Hua, H. 2013. Optical see-through head-mounted

display with occlusion capability. In Proc. SPIE 8735, Head/Helmet-

Mounted Displays XVIII: Design and Applications.

[7] Heer, J. and Stone, M. 2012. Color naming models for color selection,

image editing and palette design. In Proc. CHI ’12. ACM.

[8] Kiyokawa, K., Kurata, Y. and Ohno, H. 2001. An optical see-through

display for mutual occlusion with a real-time stereovision system.

Computers and Graphics 25, 5, 765 – 779.

[9] Kiyokawa, K., Ohno, H. and Kurata, Y. 2002. Occlusive optical see-

through displays in a collaborative setup. In ACM SIGGRAPH 2002

conference abstracts and applications, ACM.

[10] Kerr, S.J., Rice, M.D., Teo, Y., Wan, M., Cheong, Y.L., NG, J., Ng-

Thamrin, L., Thura-Myo, T. and Wren, D. 2011. Wearable mobile

augmented reality: evaluating outdoor user experience. In Proc.

VRCAI ’11. ACM.

[11] Kruijff, E., Swan, J. and Feiner, S. 2010. Perceptual issues in

augmented reality revisited. In Proc. ISMAR '10. IEEE/ACM.

[12] Leykin, A. and Tuceryan, M. 2004. Automatic determination of text

readability over textured backgrounds for augmented reality systems.

In Proc. ISMAR ’04. ACM/IEEE. 224–230.

[13] Mahy, M., Eycken, L.V. and Oosterlinck, A. 1994. Evaluation of

uniform colour spaces developed after the adoption of CIELAB and

CIELUV. Color Research and Application 19, 2, 105–121.

[14] Maimone, A. and Fuchs, H. 2013. Computational augmented reality

eyeglasses. In Proc. ISMAR ’2013. IEEE.

[15] Menk, C. and Koch, R. 2011. Interactive visualization technique for

truthful color reproduction in spatial augmented reality applications.

In Proc. ISMAR ’11. IEEE. 157–164.

[16] Movania, M. M. 2013. OpenGL Development Cookbook. Packt

Publishing Ltd.

[17] OpenGL –The Industry. 2014. Offical website for the OpenGL

standard. [Website] http://www. khronos.org/opengl/

[18] Pingel, T.J. and Clarke, K.C. 2005. Assessing the usability of a

wearable computer system for outdoor pedestrian navigation.

Autocarto ACSM.

[19] Sekuler, A. and Palmer, S. 1992. Perception of partly occluded

objects: A microgenetic analysis. Journal of Exp. Psychology 121, 1.

[20] Sharma, G., Wu, W. and Dalal, E. N. 2005. The CIEDE2000 color‐

difference formula: Implementation notes, supplementary test data,

and mathematical observations. Color Research & Application, 30(1).

[21] Smithwick, Q.Y.J., Reetz, D. and Smoot, L. 2014. LCD masks for

spatial augmented reality. In Proc. SPIE 9011, Stereoscopic Displays

and Applications XXV, 90110O.

[22] Sridharan, S.K., Hincapié-Ramos, J.D., Flatla, D.R. and Irani, P. 2013.

Color correction for optical see-through displays using display color

profiles. In Proc. VRST '13. ACM.

[23] Tanaka, K., Kishino, Y., Miyamae, M., Terada, T. and Nisho, S. 2008.

An information layout method for an optical see-through head

mounted display focusing on the viewability. In Proc. ISMAR ’08.

IEEE/ACM. 139–142.

[24] Weiland, C., Braun, A.K. and Heiden, W. 2009. Colorimetric and

Photometric Compensation for Optical See-Through Displays. In

Proc. UAHCI '09. Springer-Verlag.

[25] Zuffi, S., Brambilla, C., Beretta, G. and Scala, P. 2007. Human

Computer Interaction: Legibility and Contrast. In Proc. ICIAP '07.

IEEE Computer Society.

194

